
Team #3
Evan Gofourth
Katharine Wu
Jacob Pfeiffer
Elena Zavala
Alicia Zavala

Project Name:
Code Clash

Project Synopsis:
A game for kids to start learning basic programming logic in a player versus player game, where
they can program their own bots (spaceships!) to mine resources (asteroids).

Project Description:
There exist a plethora of educational programming tools for kids with an interest in programming
to learn. However, there lacks a concrete goal to the educational tasks. Learning for the sake of
learning fails to captivate the attention of children for long enough to make ​real ​progress. Code
Clash seeks to resolve this issue by providing new programmers with a Visual Programming
interface that makes writing a program ​easy​. Once a user is done writing a script, they attach it
to a unit in a 2D grid based game and see how that unit behaves. The player’s units (that
behave according to scripts written by the player) will compete head to head against other
players and their scripted units in an online arena. This way competition motivates the player to
learn and write better scripts, rather than a dull prompt that demands the user complete a
programming task.

Project Milestones:

Fall:
October 26: Project Proposal
October 26: Project Proposal Video
November 20: Have a multiplayer working proof of concept (something that works, if clunky)

Spring:
Feb 28: Have a polished system for finding and creating online games.
April 15: Have multiple bot commands made and implementable by the player(s)
April 15: Have a streamlined easy to use VPL editor.
April 30: Replace all filler art with finalized, professional looking artwork.
May ?: Deliver final working product and finish final project video

Budget:
Item: Unity API/Software Projected cost: $0
Item: Mirror Software (Unet copy) Projected cost: $0
Item: Professional Artwork Maximum Budget: $50

Preliminary Project Design:

A typical use case -

In the typical use case, a user will launch the game and appear at the main menu. They will
enter the ‘code editor’ and write a behavioural script for a robot agent using visual coding logic
blocks (see Figure 2). When they finish, the GameObjects (logic blocks) the player has
positioned in a Unity scene (the editor) will be translated into text based code, which will adhere
strictly to a format we have specified.

Figure 1 (Code produced by our VPL editor)

Once the code has been generated, the user will join or host a multiplayer game. Before
entering the game, they will be asked to attach behaviour scripts they have written to each of
their unit types. For example, the script shown in Figure 1 may be saved under the name
“MiningScript”, and then selected from a number of scripts in a drop down beneath the
“MiningDroid” unit type to act as that unit type’s behaviour script for the game.

When the game begins, each player will have only one control ship, which is capable of
spawning new units. Spawning a new unit will cost resources, and consume an action point
from the control ship (this limits actions taken by a unit per turn). The control ship will spawn
units as the player has programmed the control ship type to do. Each spawned ship will behave
as the player has programmed that ship type to behave.

Ideally, these spawned units will gather resources, attack enemy ships, and protect the control
ship for 1000 turns. At the end of 1000 turns, the player with the most resources wins.

How our editor works -

Users write code by dragging and positioning visual logic blocks. It will, in general structure,
resemble the drag and drop visual coding system used by MIT’s Scratch Visual Programming
Language.

https://www.google.com/search?q=mit+scratch+code+block&rlz=1C1CHBF_enUS841US841&source=lnms&tbm=isch&sa=X&ved=2ahUKEwi58NqW_tDsAhVBKKwKHYKNB7cQ_AUoAXoECBoQAw&biw=1536&bih=730#imgrc=eYsMAsP-Smz9GM

Figure 2 (Scratch Visual Logic Blocks)

The produced code will be composed of conditional statements, loop statements, and C#
method calls. For example, in figure 1, DetectResourceLeft is a precompiled, private C#
method. It is a member of the ‘Ship’ class, and will be called by the ship this script is attached to
once each turn. If the method returns ‘True’, then the C# method ‘MineResource’ will be called.
If MineResource is called, the player will gain some number of resource points, and that ship’s
script will end, as it has consumed its action point (default is one per turn).

By allowing each ship to make C# method calls based on those generated by a user written
script, we effectively allow our players to program the behaviour of agents in a 2D grid world,
which was the ultimate goal.

Networking with Mirror - ​https://mirror-networking.com/

To allow competition, which we feel is imperative to learning, the players units will be competing
against another player’s units. Networking is handled by Mirror, the successor to Unity’s Unet
networking technology. We will be using Mirror’s ‘Telepathy Transport’ option for brokering
games between clients. Mirror’s website describes Telepathy as “Simple, message based, MMO
Scale TCP networking in C#”. We will synchronize game states using our own 2D grid ‘unit
position’ seed system. We produce a list of characters representing tile types, unit types, and
unit color (red or blue depending on which player they belong to). We maintain order in this list,
convert it to a semicolon delimited string, and synchronize this string for all players after each
turn using Mirror’s SyncVar. Each turn a player will load their grid from this synchronized string,
run each of their unit’s scripts (which alter the grid), then push their changes to the synchronized
string. This is the primary game loop.

https://www.google.com/search?q=mit+scratch+code+block&rlz=1C1CHBF_enUS841US841&source=lnms&tbm=isch&sa=X&ved=2ahUKEwi58NqW_tDsAhVBKKwKHYKNB7cQ_AUoAXoECBoQAw&biw=1536&bih=730#imgrc=eYsMAsP-Smz9GM
https://mirror-networking.com/

Figure 3 (Primary Game Loop)

Technical Constraints -

Because we are using a compiled programming language (C#) and want our product to be
available as a compiled executable, we are unable to utilize the power of an interpreter to
‘evaluate’ parsed and sanitized user generated code. This means all the logic blocks must have
implementations at compile time rather than at run time. We have decided this is a tolerable
constraint, and also forces us to have a safer implementation (no user written code execution).

Ethical Issues:

There is an active debate as to whether or not ‘violent video games’ are ethical. Some have
even proposed that such games can be harmful to the mental health of children. Our product is
targeted toward children and intended to be educational. This being the case, we should do
everything in our power to strip away any human elements of violence in our game. Tomohiro
Nishikado, creator of the popular game Space Invaders, shared these concerns. It was for this
reason that he made sure all violence in his game was directed toward ‘aliens’. This need for
our game to be void of human violence is part of the reason for our choosing ‘robot’ agents for
players to program. This way when robot agents ‘destroy’ one another, there is no suggestion of
human violence.

MIT’s Battlecode, an inspiration for our game, did (and does) include elements of human
violence. While this may be acceptable in their product, which is marketed toward college age
users, we want to keep these themes out of our game which has a much younger target
demographic.

Intellectual Property Issues:

Our app is inspired by ​MIT’s Battlecode​ game - where players program AI units to compete in a
2D grid world. They use their game in annual coding competitions. It is perfectly legal for us to
‘clone’ this game (or build a game that resembles it) so long as we don’t steal artwork, code, or
backend services. Battlecode’s theme changes every year, so our static space theme should
not be an issue of intellectual property. Much of our artwork we plan to make ourselves, the rest
we will get from independent artists and use according to the license. Most of the artwork we
have sourced is licensed under the Creative Commons License. To our knowledge, we are
using very different backend technologies from those employed by MIT. It is our understanding
that Battlecode exists as a webapp (built with JavaScript), whereas Code Clash will be a Unity
C# precompiled application. There may later exist a WebGL build.

Our Visual Programming Language is inspired by ​MIT’s Scratch​. Scratch is a visual
programming language that utilizes drag and drop ‘logic blocks’. Lots of other VPL’s utilize this
drag and drop code block system. While the method of writing visual code will be the same, our
logic blocks, their purposes, and their style will differ sufficiently from MIT’s Scratch. Our final
product should differ more from MIT’s Scratch than does Snap! (another popular VPL).

Changelog:

The project synopsis was updated to no longer refer to the game as being ‘online’. While there
will be multiplayer matchmaking, the plan is no longer for the game to exist as a webapp, but
rather as a compiled executable. Similar changes were made in the project description.

The November 20th milestone was updated to state that we expect to have a multiplayer
working proof of concept rather than a single player one. This is because implementing
multiplayer went smoother than expected.

The February 28th milestone was updated. It formerly was to implement two player networking,
but this is largely already accomplished. We will instead aim to have a very polished system for
finding and creating multiplayer games rather than just introducing the feature.

Two more milestones were added to the Spring semester: one on April 15th and one on April
30th. These are dates by which we plan to have a streamlined VPL editor and professional
artwork respectively.

Work Plan:

Evan Gofourth Unity/Mirror lead engineer

Jacob Pfeffer Frontend and backend engineer

Katharine Wu Frontend and backend engineer

Alicia Zavala Frontend engineer

Elena Zavala Frontend engineer

Week of October 25th Week of November 1st Week of November 8th Week of November 15th Week of November 22nd Week of November 29th Week of January 31st Week of February 7th Week of February 14th Week of February 21st Week of February 28th Week of March 7th Week of March 14th Week of March 21st Week of March 28th Week of April 4th Week of April 11th Week of April 18th Week of April 25th Week of May 2nd
Dev Su M Tu W Th F Sa

Have a multiplayer working proof of concept (something that works, if clunky) (80 hrs)

Evan 4 4 4 4
Katharine 4 4 4 4
Jacob 4 4 4 4
Ali 4 4 4 4
Elena 4 4 4 4

Have a polished system for finding and creating online games. (120hrs)

Evan 4 4 4 4 4 4
Katharine 4 4 4 4 4 4
Jacob 4 4 4 4 4 4
Ali 4 4 4 4 4 4
Elena 4 4 4 4 4 4

Have multiple bot commands made and implementable by the player(s) (32 hrs)
Ali 4 4 4 4
Elena 4 4 4 4

Have a streamlined easy to use VPL editor. (108 hrs)

Evan 4 4 4 4 4 4 4
Katharine 4 4 4 4 4 4 4
Jacob 4 4 4 4 4 4 4
Ali 4 4 4
Elena 4 4 4

Replace all filler art with finalized, professional looking artwork. (16 hrs) Ali 4 4
Elena 4 4

Deliver final working product and finish final project video (44 hrs)

Evan 4 4 4
Katharine 4 4 4
Jacob 4 4 4
Ali 4
Elena 4

